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Probability density function (p.d.f.) methods are extended to include modelling of
wall-bounded turbulent flows. A p.d.f. near-wall model is developed in which the
generalized Langevin model is combined with a model for viscous transport. This
provides exact treatment of viscous inhomogeneous effects, and enables consistent
imposition of the no-slip condition in a particle framework. The method of elliptic
relaxation is combined with additional boundary conditions and with the general-
ized Langevin model to provide an analogy for the near-wall fluctuating continuity
equation. This provides adequate representation of the near-wall anisotropy of the
Reynolds stresses. The model is implemented with a p.d.f./Monte Carlo simulation
for the joint p.d.f. of velocity and turbulent frequency. Results are compared with
DNS and experimental profiles for fully developed turbulent channel flow.

1. Introduction

In an effort to offer a more comprehensive approach for the modelling of turbulent
reactive flows, probability density function (p.d.f.) methods are extended to include
the modelling of near-wall flows. Many formulations to incorporate the effects of
the wall in turbulence models involve the use of wall functions (Launder & Spalding
1974; Singhal & Spalding 1981; Rodi 1980; Spalding 1977; Dreeben & Pope 1997b),
damping functions (Van Driest 1956; Lai & So 1990; So, Lai & Zhang 1991; Craft
& Launder 1995; Shih & Lumley 1993; Hanjalic & Launder 1976; Launder &
Tselepidakes 1991), or elliptic relaxation (Durbin 1991, 1993; Demuren & Wilson
1994; Laurence, Durbin & Demuren 1995; Dreeben & Pope 1997a). The model
developed here uses the no-slip condition on velocity at the wall, and has no explicit
dependence on wall-normal distance in the governing equations. In general, this can be
achieved only with elliptic relaxation or with some of the damping-function methods
(see for example, Craft & Launder 1995); our approach is to use elliptic relaxation in
conjunction with the generalized Langevin model of Haworth & Pope (1986, 1987).

Much of this work is an extension of the modelling in Dreeben & Pope (1997a).
That model combines a p.d.f./particle development with an Eulerian model for the
dissipation, and demonstrates the computational feasibility of a derived Reynolds-
stress closure. The current work combines the particle velocity model of Dreeben &
Pope (1997a) with the stochastic turbulent frequency model of Jayesh & Pope (1995).
Here, the model is implemented in a full p.d.f./Monte Carlo simulation.

1 Present address: Combustion Research Facility, Sandia National Laboratories, Livermore, CA
94551-0969, USA.
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We describe the modelling issues associated with bringing the p.d.f. method from its
current state to the ability to characterize near-wall flows through the viscous sublayer.
In §2, we define relevant terms and describe the common current implementation
of p.d.f. methods without efforts to model the effects of the wall. The bulk of the
paper is devoted to confronting the two main physical effects which are important
in near-wall turbulence modelling: steep inhomogeneity and strong anisotropy in the
viscous sublayer. Section 3 addresses inhomogeneity and includes a discussion of the
no-slip condition on a particle level, plus modifications to the basic model which make
the no-slip condition feasible to impose. Section 4 addresses the issue of modelling
the near-wall anisotropy. A p.d.f. model emerges in §4 which is based on the one
which appears in Dreeben & Pope (1997a), and is used to generate model profiles
of turbulent statistics for fully developed channel flow. These results are shown with
DNS and experimental data in §5. Relevant numerical issues which arise with the
Monte Carlo method are discussed in the Appendix.

2. Current use of p.d.f. methods

To see what modifications the p.d.f. approach needs to handle near-wall flows, we
briefly review a common high-Reynolds-number p.d.f. implementation which does not
incorporate a solid wall. Let f (V;x,t) be the Eulerian p.d.f. of velocity U at a given
location x. While turbulent moment closures aim to solve equations for moments of
f , a p.d.f. model forms a closure for f itself. For density p, kinematic viscosity v, and
pressure decomposed into its mean and fluctuating components

7 =(Z)+p, (2.1)
Pope (1985) shows that the exact evolution equation for f is
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We cannot solve (2.2) directly for f because the right-hand side of the equation
contains unknown terms in the form of conditional expectations. Instead, we construct
a model whose domain is a field of probability densities of velocity, not of velocity
itself. For time-scale information, we also include a stochastic characteristic frequency
o with sample space variable €. This leads to a closed equation for p.d.f. f(V,Q;x,1)
which we use as a model for f . The model is based on an ensemble of particles: the
general particle has position Z'(t) and velocity %(t). For infinitesimal time increment
dt, each particle’s position evolves like that of a fluid particle:

This equation is inherent to the Lagrangian approach of p.d.f. methods; it says
that particles are to be convected through the domain, and it causes the associated
processes of turbulent production, transport, and mean convection to appear in the
governing equations in closed form.

The particle velocity evolves with a model for the terms

1oz 4y 0U;
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in the Navier—Stokes equations. For

(U) = / Vif dV do, 2.5)

() = [ (= () (v, = (v;) £ 4V de, 26)

and model constant Cy, the generalized Langevin model of Haworth & Pope (1986)
specifies

10(2)
_E 0x;
where e is the dissipation rate. The term dW/ is an increment of the isotropic Wiener

process W', in which each increment is a random variable with a normal (0,dt)
distribution and with

du; = dt + Gi; (%; — (U;)) dt + (Coe)' > dW, (2.7)

AW, dW) = dt 5. (2.8)

The tensor Gj; is a function of 0 (U;) /dx;, (uu;), and e. Considerable flexibility exists
in how G;; can be specified, depending on what sort of flow is to be modelled. Pope
(1993b) has demonstrated how different choices of G;; and Cy make the generalized
Langevin model equivalent to some of the well-known Reynolds-stress models such
as Rotta’s (1951) model and the IP (isotropization of production) model of Naot,
Shavit & Wolfshtein (1970) and Launder, Reece & Rodi (1975). We begin with the
simplified Langevin model of Pope (1993b) for G;:

€

Gij=— (% + %Co) X dijs (2.9)
where
_ (i)
k= 3 (2.10)

is the turbulent kinetic energy.

Like any turbulence model, p.d.f. ones need to carry some piece of time-scale
information from which to determine e. With traditional moment closures, the most
common approach for this is to incorporate a modelled evolution equation for e itself
as in Daly & Harlow (1970). An alternative method due to Wilcox (1993) is to use
an equation for a mean characteristic turbulent frequency (w), and then to define

e=k{w). (2.11)

In recent years, p.d.f. methods have incorporated a stochastic model for turbulent
frequency o, developed by Pope & Chen (1990), Pope (1991), and Jayesh & Pope
(1995). While it is a long-term goal to formulate a broadly applicable model for
turbulent frequency, the model currently appears in different contexts with somewhat
different forms. It has been used by Pope (1991) for free shear flows, by Norris & Pope
(1995) and Saxena & Pope (1996) for combustion of a piloted jet diffusion flame, by
Subramanium & Pope (1997) for a periodic reaction zone model problem, by Delarue
& Pope (1997) for compressible turbulent reacting flows, and by Van Slooten, Jayesh
& Pope (1997) for a velocity/wave-vector p.d.f. model. For

(0) = /QdedQ, (2.12)
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and e given by (2.11), the simplest formulation of this frequency model is
do = —C3 (0) (0 — (0)) dt — S, () © dt + (2C3Cy () @) 2dW". (2.13)

Here, dW” is another Wiener process, independent of dW/ of (2.7). Model constant
C; controls the statistical dependence of w on the other particle properties, and Cy
controls the variance of the marginal p.d.f. of w. The term involving S,, accounts for
generation and loss of mean turbulent frequency. Particle equations(2.3), (2.7), and
(2.13) lead to evolution equations for (U;), (uu;), and (w) (Pope 1991; Dreeben &
Pope 1997b). This provides a basic p.d.f. modelling framework from which to build a
near-wall modelling capability.

3. Inhomogeneity: enabling use of the no-slip condition

In the viscous sublayer, near-wall turbulent flows are strongly inhomogeneous. For
any turbulent statistic ¢, this inhomogeneity is associated with the viscous transport
term vV?¢ appearing in the governing equations for ¢ as a dominant term close
to the wall. If f is the p.d.f. of all relevant field properties, the viscous transport
terms correspond to a term vV>f in the p.d.f. evolution equation. For the p.d.f. model
described above, there is no explicit representation of viscosity. Beyond the issue of
inhomogeneity, the neglect of the viscous terms poses a difficulty with self-consistency
at the wall. Physically, the viscous term vV?*(U;) balances the mean pressure gradient
in the mean velocity equation close to the wall. In a model without the viscous term,
the no-slip condition forces the mean pressure gradient to zero at the wall. This
contradicts the condition of any pressure-driven flow such as pipe flow, in which
the streamwise pressure gradient is non-zero all the way to the wall. So the viscous
effects need to appear in the model for self-consistency as well as modelling accuracy.
The aim of this section is to incorporate the viscous transport terms and the wall
boundary condition into the model of §2.

3.1. From fluid particles to stochastic particles

For inhomogeneous turbulent flows, we know from Pope (1985) that (2.2) can be
written as
of of 4 10(2) of 02
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where the viscous transport appears as the first term on the right-hand side. The model
of §2 must be modified in a way which includes this term in the p.d.f. evolution
equation. Because the term involves a diffusion of the p.d.f. in physical space (as
opposed to velocity space), it can only appear through a modification of the evolution
of particle position, (2.3). The diffusion is best represented by Brownian motion,
described by Einstein (1926). Accordingly, we specify the particle position to be

da; = u;dt + (2v)"* dw,. (3.2)

U(x,t) = V>} . (30

With this equation, the particles carry momentum with them in the same way that
molecules do, and with the same statistical properties. Woelfert (1995) has used this
method in near-wall modelling, and Colucci et al. (1998) have used it for variable-
property mixing in the context of reacting flows.
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Two important consequences follow from (3.2). First, the particle trajectories are
no longer differentiable functions of time: they cannot be envisioned as fluid particles
or material points. We refer to them as stochastic particles, and their motion is
chosen to bring out an aspect of the flow which is crucial to near-wall modelling:
viscous transport. But it should be noted that the velocity information of the model
is embodied in the particle property %, not in the particle motion.

The second consequence of (3.2) is that (2.7) must be modified for consistency with
the additional random motion. Dreeben & Pope (1997a) develop this modification
and its associated particle velocity equation:

_10(2) O*(Us) 12 0(Uy)
o dr ﬁxjﬁx]dt+(2) o Wi

+Gij (%, — (U)) i+ (Coe)' > dW/. (3.3)

Note that the Wiener process on the first line of (3.3) is identical to the one of (3.2).
For laminar flow, the p.d.f. of velocity is a delta function, and the mean velocity at

a given location is just the particle velocity at that location. In this case, (3.2) and the

first line of (3.3) form a Monte Carlo formulation for the Navier—Stokes equations.
For turbulent flow, (3.2), (3.3), and (2.13) lead to the new p.d.f. equation:

of of o of 10(2) 0

L 4y = - — —[G: (v, —(U;

6t+ "Ox; (?xoxl oVip 0x; GV,[ ]( i ’>)f]

auy) of 40 (Upolu;) of 1 f
ax; 0x;0V; ax,  Oxi VoV, ViV

0 0%(Q
1@ () 1145, (0) 225) + € o) ),
For the incompressible flow considered here, the steps for deriving an Eulerian p.d.f.
equation such as (3.4) from particle equations are described in Dreeben & Pope
(1997a), and further depth is provided in Pope (1985), Wax (1954), and Dreeben
(1996). Governing equations for any statistic ¢ are determined by multiplying (3.4)
by the sample space variable associated with ¢ and then integrating over velocity
and frequency space. Dreeben (1996) provides detailed calculation of these moment
equations. For

d%i =

+2v

+C3 {w) 5~

(3.4)

Be) o) o0,
Dr ~ ot + (Uy) — . (3.5)
the modelled governing equations for (U;), (u;u;), and (w) are
D(u) _ 1a{z) @ *(U;)
Dt  p 0x; 0x; (i) + v 0x;0x;’ (36)
D <“iuj> o 52(”:‘%‘) 0 <“iujuk> 0 <Uj> 0 <Ui>
Dt = 00X, 0Xy 00Xy <u uk> 0xy + <u1uk> 0xy,

+ G (weu) + G (weui) + Coedyj,  (3.7)
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The inclusion of Brownian motion in (3.2) leads to the important vV>f term on the
right-hand side of (3.4). This in turn leads to the viscous transport terms in the
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moment equations. The Laplacian term of (3.6) allows self-consistent implementation
of the no-slip condition at the wall, and the Laplacian term of (3.7) permits accurate
representation of the dominant near-wall balances of the Reynolds stresses (Dreeben
& Pope 1997a).

The no-slip condition also requires a modification to the definition of e. Equa-
tion (2.11) is appropriate for high-Reynolds-number flows, but it incorrectly forces e
to zero at the wall, when physically e reaches a non-zero peak there. An appropriate
definition of e allows Kolmogorov scaling close to the wall, and the scaling of (2.11)
far from the wall. Accordingly, we assign

e= (o) (k+vCi (»)). (3.9)

The model constant Cr is chosen so that in the limit as k — 0 (3.9) is equivalent
to the scaling of the time scale T of Durbin (1993) and with the identical value of
Cr =6.0.

3.2. Wall boundary conditions on particles

Particle boundary conditions amount to specification of the joint p.d.f. of velocity
and w at the wall for the p.d.f. equation (3.4). They must also be consistent with the
physical boundary conditions which are known to apply to the partial differential
equations (3.6), (3.7), and (3.8).

3.2.1. Treatment of particle position

The wall boundary condition on particle properties depends on our ability to
distinguish those particles which strike the wall (taken to be y = x; = 0) from those
which do not (Pope 1993a). The location of each particle is governed by (3.2). For
flow in the viscous sublayer, the local fluid velocity % is sufficiently small compared
to the stochastic term that the particle’s distance from the wall % is governed by
Brownian motion with

d = (2v)2dw,. (3.10)

So the appropriate model for the particle location in the region adjacent to the wall
is reflected Brownian motion in which

Y(t +dt) = |W(t + dr)], (3.11)

where @(t + dt) = %(t) + d%. Over any given time interval, a particle undergoing
reflected Brownian motion can strike the wall infinitely many times. For a particle
located at y, at time t = 0, we consider its non-reflected motion over a small finite
time step At, and then keep track of which particles have struck the wall and which
have not. Each particle can have trajectories of three different types, shown in figure
1. Trajectory 1 crosses the wall and becomes negative at the end of the time step,
trajectory 2 crosses the wall and returns to become positive, and trajectory 3 remains
positive without ever touching the wall. Given only the particle’s location at the
beginning and the end of the time step, the boundary condition must impose no slip
and impermeability for trajectories 1 and 2, but not for trajectory 3. For each particle,
(3.10) distinguishes trajectory 1 from the other two. If

Y(t + At) = yy < 0, (3.12)

then the particle undergoing reflected Brownian motion has clearly struck the wall;
the particle properties are reset according to the specifications which follow in §3.2.2,
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Trajectory 1
Yl ------- Trajectory 2
.................. Trajectory 3

Time

FIGURE 1. Possible non-reflective trajectories of a particle from a point in the viscous sublayer of
the computational domain.

and the new location of the particle is |y,|. But if (3.10) gives
Yt + At) = y, > 0, (3.13)

then the particle may take trajectory 2 or trajectory 3 to get there, and only trajectory
3 involves contact with the wall. The likelihood of trajectory 3 (and hence of the
need to reset particle properties) is just the probability that the particle strikes the
wall over time step At given that it begins at yy, and ends at y,. If my, is the running
minimum of y over the interval At, then standard methods described by Karatzas &
Shreve (1991) can be used to show that

P [ma; < 0| %(0) = yo, #(At) = y,] = exp {—voni’ } (3.14)

To implement these ideas numerically, we specify the particle’s position after At

A(t+ At) = (x1,y1,21), (3.15)
given its initial position
Z(t) = (x0, Y0, 20) - (3.16)
Based on (3.2), we set
X1 = xo + UAL + (2vAD)'/* ¢, (3.17)
91 = yo + VAt + (2vAD)' 2 &, (3.18)
21 = zo + WAt + (2vA1) /2 &, (3.19)

where the ¢ are independent standard Gaussian random variables. Then the new
location is

X1 = 351, (320)
yi=1%l, (3.21)
zZ) = ZAl. (322)

The particle properties of velocity and @ are reset according to the specifications



148 T. D. Dreeben and S. B. Pope
described in §3.2.2 if

{91 <0} (trajectory 1), (3.23)
or if
A _yoya 3
=
{yl >0 and exp { AL } > r/} (trajectory 3), (3.24)

where 7 is a random variable with a standard uniform distribution. Otherwise (tra-
jectory 2), the particle properties are not reset.

3.2.2. Particle boundary specifications

The task of the particle boundary condition is to impose no-slip and impermeability
on the velocities, and to choose a statistical behaviour of w which ensures that the
model produces the correct near-wall balance in the kinetic energy equation:

vk —e =0, (3.25)

where the ' superscript denotes a derivative in the wall-normal direction.
The condition on velocities is straightforward: for those particles which strike the
wall, we set

Ui(t+ At) = 0. (3.26)
For w, we see that the specification

B [k//(o)]1/2
W=

imposes (3.25) through the model definition of € in (3.9). If we assume that k(0) =
k’(0) = 0, then (3.27) can be expressed in a way that is easier to compute accurately:

120y
) ="

The condition on the distribution of w is based on the work of Jayesh & Pope
(1995). A gamma distribution is given for those particles which strike the wall, with
its mean {(w) specified by (3.28). It is found that the near-wall values of (w) and €
are insensitive to the variance of the distribution of w at the wall. The variance of ®
is set to

(3.27)

(3.28)

Cy(w)?, (3.29)

which is the variance of w for the stationary solution of a simplified (2.13), in which
the sink term in S, has been removed. At the wall, the joint p.d.f. of velocity and
frequency is a delta function about %; = 0 for the velocities with a gamma distribution
for the turbulent frequency.

3.3. A local model with the no-slip condition

Here we assemble a Monte Carlo simulation for a model with the no-slip bound-
ary condition and with the viscous transport terms described above. This is partly
to demonstrate the computational feasibility of the no-slip condition in a particle
framework, and partly to set the stage for the further developments of the model in
§4. The model which follows is nearly equivalent to including the viscous terms and
the no-slip condition in Rotta’s model. The term ‘local’ is used to distinguish it from
the non-local model which appears in §4.

The particle equations to be used are (3.2), (3.3), and (2.13), with G;; specified
by (2.9). Model constants here are set to previously established values, although
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FIGURE 2. (a) Streamwise and (b) wall-normal particle velocities for the local model.

refinement of the model in the light of available direct numerical simulation (DNS)
data leads to some modifications of these constants in §4. The model constant Cy was
originally meant to be universal in accordance with the theory of Kolmogorov (1941),
and was chosen by Pope (1985) to be Cy = 2.1. However, Pope (1994a) notes that
values of Cy closer to 5.0 have been observed and inferred from numerical simulations.
We adopt the value Cy = 3.5 which is used successfully for inhomogeneous flows by
Pope & Chen (1990).
The term S, in (2.13) is given by Pope & Chen (1990) as

So =Cu2 — Cwlg (330)
€
where
0 (Uy)

is the production of turbulent kinetic energy and C,; and C,, are model constants.
Like the e equation in k—e type closures, (3.8) contains transport (first two terms
on the right-hand side), a source and a sink. For homogeneous flows, Pope & Chen
(1990) show that the source and sink of w embodied in (3.30) are related to the
corresponding terms of the e equation by

Cwl = Csl - 1» (332)
Cw2 = Ce2 — 1L (333)

Based on common values from the k—e model, plausible values of the constants in S,
are C,; = 0.44 and C,, = 0.9. The constant C3 = 5.0 of (2.13) controls the turbulent
transport term of (3.8). It is chosen to be consistent with a p.d.f. constant-stress layer
analysis of Dreeben & Pope (1997b), which sets the von Karman constant xk = 0.41
for the model of §2. The constant C4 = 0.25 is the same one used by Jayesh & Pope
(1995) which was originally chosen to match DNS results of Yeung & Pope (1989)
for isotropic turbulence.

Using the Fortran code of Pope (1994b), a Monte Carlo simulation is implemented
with the local model and boundary conditions described here for fully developed
channel flow at Reynolds number

u.L

Re, = —= = 395, (3.34)
v
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FIGURE 3. (@) Mean velocity and (b) kinetic energy: local model (line) and DNS data (symbols) for
fully developed channel flow.
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FIGURE 4. Coordinate system relative to the wall and the mean flow.

where u. is the friction velocity and L is the channel half-width. Figures 2(a) and
2(b) are scatter plots of the streamwise and wall-normal components of particle
velocity, shown from the wall to y* = 6. All velocities shown are normalized by
u.. These results show successful use of the no-slip and impermeability conditions.
Mean velocity and turbulent kinetic energy for the local model are shown together
with DNS results of N. N. Mansour (private communication) in figures 3(a) and
3(b). While these results show that the particle boundary conditions work properly,
it is clear that the model as it stands is inadequate. Although the inhomogeneous
terms for velocity and Reynolds stress all appear in closed form in (3.6) and (3.7), the
important issue of near-wall anisotropy needs to be addressed.

4. Anisotropy
4.1. Why we need to model anisotropy close to the wall

The results of the local model are used to bring out the important role of anisotropy
and near-wall scaling of the Reynolds stresses in constructing the model. For a
coordinate system arranged as in figure 4, it seems clear from figure 3(a) that close
to the wall, the Reynolds shear stress — (uv) given by the local model is too high.
Figure 5 shows this shear stress: while the agreement with DNS is quite close over
the bulk of the domain, the strong overprediction of — (uv) within y* = 26 appears
to be sufficient to send the velocity profile awry.

An important feature of near-wall turbulence is that those Reynolds stresses with
a normal component scale with powers of y higher than 2. Mansour, Kim & Moin
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FIGURE 5. Reynolds shear stress: local model (line) and DNS data (symbols)
for fully developed channel flow.

(1988) have shown that this is a consequence of the fluctuating continuity equation
very close to the wall, which makes v’ scale with y* rather than y. Durbin (1991) has
shown that this suppression of v’ in the viscous sublayer is important for near-wall
turbulence models. In particular, the physical scaling of the Reynolds stresses is

() ~ y%, (4.1)
(v*) ~ y*, (4.2)
<w2> ~ (4.3)
(w) ~ y*. (4.4)

The near-wall anisotropy arises because those components of Reynolds stress which
are purely parallel to the wall (in this case (u?) and (w?)) dominate the other
components. The local model is unable to capture this anisotropy because the simple
Langevin model of (2.9) allows no inherent distinction between the behaviours of
U, v, and ¥ close to the wall, so that turbulent intensities in one direction cannot
dominate intensities in another. Figure 6 shows the model and the DNS data on
Lumley’s (1978) anisotropy map. At the wall, the true Reynolds stresses reach their
two-component limit which is represented by the top line of the triangle. Clearly
the local model never comes close to that limit, since all Reynolds stresses are of
comparable magnitude throughout the domain.

Most near-wall turbulence models incorporate a near-wall suppression of v’ relative
to v’ and w’ in the Reynolds stresses to achieve a plausible velocity profile. A common
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FIGURE 6. Anisotropy map: local model (line) and DNS data (symbols)
for fully developed channel flow.

approach is to connect an asymptotically correct (or nearly correct) local model for
the viscous sublayer with a relatively isotropic model far from the wall, using a
damping function (Hanjalic & Launder 1976; So et al. 1991; Lai & So 1990; Craft &
Launder 1995; Launder & Tselepidakes 1991). An alternative approach (Durbin 1991,
1993) which is followed here involves a non-local model using elliptic relaxation. This
has been used by others (Demuren & Wilson 1994; Laurence et al. 1995), and has
been incorporated into the generalized Langevin model as a Reynolds-stress closure
by Dreeben & Pope (1997a).

4.2. Elliptic relaxation

To model the near-wall anisotropy effectively, elliptic relaxation is used in conjunction
with additional boundary conditions to provide a particle model for the effect of the
fluctuating continuity equation close to the wall. The primary modification to the
local model of §3 is the specification of G;; and C, based on the model of Dreeben
& Pope (1997a). We introduce a tensor g;; to characterize the non-local effect of
fluctuating pressure, and set

1
ij — 5€0j
Gy = %, (4.5)
Cy = XN 4.6
0 e (4.6)

With vanishing k and non-zero e at the wall, G;; becomes negative without bound as
y — 0. This poses a numerical difficulty for the solution of (3.3), which is addressed
in the Appendix, §A.1. To define g;; we first define a length scale. Following Durbin
(1993), we take the maximum of the turbulent and the Kolmogorov scales:

372 NE 1/4
—.,C, () , (4.7)
€ €

L = Cymax
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where C; and C, are model constants. Then we specify the non-local term ¢;; with
the following elliptic-relaxation equation:

1-C 0 (U,
o1y = LV (Loy) = =Sk 0) 0+ ket SO, (4.8)
2 0x|
where
Hijkl = (C2Av + %Vs) 5ik5jl - %VSéil(Sjk + 'VSbikéjl - VSbiléjky (4.9)
A, = min [ 1.0, CUM : (4.10)
(3k)
and
by, = M) s (4.11)
Y (uruk) 3 '

is the Reynolds-stress anisotropy tensor. Close to the wall, the Laplacian term of (4.8)
becomes important and the term @;; depends on the turbulent statistics throughout
the domain, by analogy with the fact that pressure has non-local dependence as well.
Far from the wall, the Laplacian term becomes negligible and @;; depends only on
the local quantities in the forcing term on the right-hand side of (4.8). For sufficient
distance from the wall, those terms form the Lagrangian equivalent (see Pope 1993b)
of a modified IP model. The modification involves incorporating the term A, in
(4.9), in an effort to improve the model’s performance in the logarithmic layer. The
behaviour of the logarithmic profile is sensitive to the Reynolds-stress redistribution,
which in turn is most sensitive to the IP model source term in question. Durbin
(1991) has argued that in a k—e type closure, the turbulent viscosity scales with the
wall-normal turbulent intensity <vz> rather than with k, and hence is suppressed
close to the wall. By analogy, this p.d.f. model captures the logarithmic layer more
accurately when the IP source term is similarly suppressed near the wall. The term
A, is an invariant which behaves like <v2> /k close to the wall (for an appropriately
chosen constant C,). Far from the wall, we have 4, = 1.0, and the source term is
identical to that of the standard IP model. This modification improves the behaviour
of the mean velocity profile in the log layer, with the IP model constant C, = 0.63.
The fact that C, is close to its original value of C, = 0.6 preserves the ability of the
current model to characterize a sudden distortion of initially isotropic turbulence, as
Launder et al. (1975) describe. Model constants are identical to those of Dreeben &
Pope (1997a), except for C; which is slightly larger here:

C, = 1.85; C, =0.63; C, = 1.4; y5 =0.1; C; = 6.0; C;, =0.134; C, = 72.0. (4.12)

Both C; and C, are very close to their original values from Launder et al. of C; = 1.8
and C, = 0.6. Although the above modelling alone is sufficient to produce a plausible
velocity profile, near-wall scaling, and anisotropy, small modifications are needed to
the equation for w to improve the performance of the model in the wake region at
the channel half-plane. We set

P P\’
S, = Cyr — Cpyy — + Cs max (0,1 — ) , (4.13)
€ €
with
C, =044; C,p =0.73;: C; =5.0; Cy =0.25; Cs = 0.3. (4.14)
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The particle equations for the non-local model are identical to those of the local
model, given by (3.2), (3.3), and (2.13).

4.3. Near-wall behaviour

Because of the Laplacian term in (4.8), the non-local parameter p;; needs a boundary
condition at the wall. It will be shown below that a suitable condition is

pij = —4.5enn;. (4.15)

To examine the near-wall behaviour of the model, we expand each Reynolds stress in
a Taylor series about the wall, impose the boundary conditions on the particles and
on @;;, and impose the Reynolds-stress equation (3.7). The particle velocity equation
reduces to
1
A, = % (w,— (U)) dt (4.16)

where parentheses around the indices of @ suppress the summation. This is a relax-
ation equation of particle velocity to its local mean value. Velocity fluctuations are
suppressed to a degree that depends on the diagonal components of g;;. Here, the
boundary condition on ;; is used to distinguish the effect of the Langevin model in
different directions. By setting only the wall-normal component of @;; to be non-zero
and negative in (4.15), we suppress fluctuations in the wall-normal velocity relative to
the other two components. This provides an analogy to the effect of the fluctuating
continuity equation adjacent to the wall.

Without loss of generality, the near-wall scaling of Reynolds stresses and anisotropy
are determined in the coordinate system of figure 4. The governing near-wall Reynolds-
stress equations reduce to

vaza<y”22> — z (?) = 0(y), (4.17)
va;<yl];> + gpz;_e (1?) = 0(y), (4.18)
62§;2> _ % (w?) = 0(y), (4.19)
va;<;’f ) 4 9 2= € (uv) = 0(y). (4.20)

To see how the solutions of these behave, we simplify them using the near-wall scaling
properties of k. Because k ~ y? close to the wall, (3.25) implies that to leading order,

e 2

- =—. 421

P (421)
If we substitute (4.21) into (4.17)—(4.20), then these equations all reduce to ordinary
differential equations in y of the form

" <uiu >
(i)™ — %‘j)sz = 0(y). (4.22)
Again, parentheses around the indices i and j indicate that the summation is to be

suppressed. The solution to (4.22) is the sum of the homogeneous solution (not to
be confused with a solution for homogeneous turbulence) (uu;), and the particular
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solution (uju;), where
(uittj),, = Ay Ul /2 gy 1/2), (4.23)

(uiuj), = Cupy’- (4.24)
The constants 4 and B reflect the two degrees of freedom associated with the
second-order differential equation; C;) is determined by the O(y) forcing term on the
right-hand side of (4.22). For all combinations of i and j, the exponent of the first
term of (4.23) is negative, so the no-slip boundary condition forces

Agjy = 0. (4.25)

For each Reynolds stress, the near-wall scaling is determined by either the homoge-
neous term in B; or by the particular term in Cg;. The term which scales with a
lower power of y is the dominant term. For (u?) and (w?) in which all Reynolds-stress
components are parallel to the wall, we have from (4.15), (4.17), (4.19), and (4.21) that

O11) = %33) = 2. (426)

This implies through (4.23) that the homogeneous solutions of (4.22) scale with y?.
So (compared to (u;u;) , y3) the homogeneous terms dominate the solutions and
the model gives

(W) ~ (W) ~k~ 4.27)
which is the correct physical behaviour of these components. For <vz>, we find from
(4.15), (4.18), and (4.21) that

06(22) = 14, (428)

which makes the homogeneous solution of (4.22) scale with y*?’. So for this case the
particular solution dominates and we have

(v*) ~ y'. (4.29)
For the case of Reynolds shear stress, the identical argument shows that
(w) ~ y°. (4.30)

Comparison of (4.27), (4.29), and (4.30) with (4.2)—(4.4) shows that the model correctly
reproduces the near-wall scaling in all of the Reynolds stresses except for <vz>. Itisa
common feature of elliptic relaxation models that the near-wall Reynolds stresses with
a wall-normal component scale with the same power of y. In our case that power is 3;
in others such as Durbin (1993) the power is 4. So of the two Reynolds-stresses (uv)
and <1)2>, one is represented correctly and the other is off by one power of y. But the
important point is that the suppression of v’ causes the Reynolds-stress components
which are parallel to the wall to dominate those with a normal component as the wall
is approached. In that limit, we expect the anisotropy to approach its two-component
state. Particle wall boundary conditions are given by (3.26), (3.28), and (3.29), for
those particles which strike the wall according to (3.23) and (3.24). The boundary
condition on ;; is given by (4.15).

Here is a synopsis of the complete model. The particle properties of position,
velocity, and turbulent frequency are governed by (3.2), (3.3), (2.13) respectively.
Dissipation is given by (3.9). The model terms G;j, Cy, and S, are given by (4.5)-
(4.14).
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FIGURE 7. Streamwise particle velocities for the non-local model.
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FIGURE 8. Mean velocity: non-local model (line) and DNS data (symbols)
for fully developed channel flow.

5. Results for fully developed channel flow

The model is implemented using a Monte Carlo simulation of Pope (1994b),
adapted to fully developed channel flow with Re, = 395, based on the friction
velocity and the channel half-width. The equations are solved on a 60 cell grid, with
480 particles per cell. Grid-independent solutions are obtained to the extent that the
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FIGURE 9. Reynolds shear stress: non-local model (line) and DNS data (symbols)
for fully developed channel flow.

half-plane mean velocity changes by 2% under a grid refinement to 90 cells. Particle
velocities, normalized by the friction velocity, are shown in figure 7. Mean quantities
are computed using the non-parametric regression of Dreeben & Pope (1992) of the
particle results, which is described in the Appendix, §A.2. Mean quantity calculations
are repeated and time averaged over a stationary numerical solution to the stochastic
differential equations. This produces the mean velocity profile of figure 8 from the
particle results of figure 7. Mean velocity with the non-local model shows improved
agreement over the local model profile of figure 3(a), because the Reynolds shear
stress of figure 9 is correct very close to the wall, although the peak shear stress is
slightly underpredicted. The near-wall suppression of v by (4.16) and the boundary
condition (4.15) is shown in figure 10. Fluctuating velocities are determined by taking
each particle velocity and subtracting the mean velocity interpolated at the particle’s
location. Streamwise and wall-normal fluctuations appear in figure 10 on the same
scale to show their relative magnitudes. Comparison of the near-wall scaling of k
and (uv) with their behaviours predicted by (4.27) and (4.30) are shown in figure 11.
Only a slight discrepancy occurs within y™ = 2 due to the difficulty in achieving such
accuracy with the regression algorithm. As a consequence of the near-wall scaling
argument, we also expect the turbulence to reach its two-component state at the
wall. The anisotropy map of figure 14 verifies that this is the case, although the
model and the DNS do not reach the same two-component states. Presumably this
is because the model makes (v?) scale like y* while the correct physical behaviour
is to scale like y*. Other comparisons of model results with DNS are shown in
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FiGgure 10. Particle fluctuating velocities for the non-local model.
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FiGURE 11. Near-wall scaling of kinetic energy and Reynolds shear stress for fully developed
channel flow: comparison of the non-local model (line) with DNS data (symbols).

figures 13-16. In the budgets of (u*) and (uv) shown in figure 15, T, is viscous
transport, Tp is turbulent transport (triple correlation), P is production, ¢ is the
correlation of fluctuating velocity and pressure gradients, and e is the dissipation.
The differences of the fluctuating pressure and dissipation terms are shown together,
because the generalized Langevin model does not distinguish them in (3.7). Also,
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Ficure 13. Normal Reynolds stresses: non-local model (line) and DNS data (symbols)
for fully developed channel flow

turbulent transport terms are not computed directly because the statistical error
associated with triple moments is too severe for the regression algorithm. Instead, we
take the transport to be the negative sum of the remaining terms, which is valid for
the stationary solution.

The most significant difficulty for the p.d.f. model occurs in the ratio of production
to dissipation in figure 16. A key assumption for near-wall turbulence models is
that the turbulent transport can be neglected in the logarithmic layer (in this case
from y* = 40 to about 120), and that the production equals the dissipation there.
While the DNS bears this out, the p.d.f. model does not, even though the turbulent
transport appears in (3.7) in closed form. The corresponding departure of the turbulent
transport term from zero can be seen in the budget of <u2> shown in figure 15(a).
The turbulent transport is modelled with the p.d.f. method primarily through the
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FIGURE 17. Mean velocity for fully developed channel flow: comparison of the non-local model
(line) with data of Wei & Willmarth (symbols) at different Reynolds numbers.

generalized Langevin model (see Pope 1993b). Ultimately this can be corrected either
by revisiting the generalized Langevin model with the transport in mind, or through
compensation with the w model. Low values of the von Karman constant between
Kk = 0.30 and 0.32 are found in figure 17.

Model velocity profiles and friction coefficient over varying Reynolds numbers are
shown in figures 17 and 18. For each case, the chosen number of grid cells increases
with the Reynolds number. The velocity profiles are compared to the experimental
channel flow data of Wei & Willmarth at Reynolds numbers Re, = 14914, 22776,
and 39582, with Re, based on the mean velocity at the channel half-plane and on
the channel half-width. Based on previous work of Dreeben & Pope (1997a), these
correspond to Re, = 695, 1012, and 1655 respectively. Model results for the friction
coefficient are compared with the experimental data compiled by Dean (1978). For
half-plane mean velocity (U),, the friction coefficient C; = 7, /(1p (U)i), is plotted
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FiGURE 18. Friction coefficient as a function of Reynolds number for fully developed channel flow:
comparison of the non-local model (line) with data compiled by Dean

against the Reynolds number Re;,, based on the bulk mean velocity and the full
channel width.

6. Conclusion

Near-wall modelling capability is now included in the p.d.f. method. Two central
aspects of the model enable adequate representation down to the wall. First, Brownian
motion of the particles allows the terms involving viscous transport to be represented
in the equations in closed form. This feature allows imposition of the no-slip and
impermeability conditions on particles. Second, elliptic relaxation in the generalized
Langevin model is used to implement an analogy to the fluctuating continuity equation
close to the wall. This enables adequate representation of the near-wall anisotropy.
Comparison of a p.d.f./Monte Carlo simulation with DNS and experimental results
demonstrates the viability of the model.

It is always a virtue for a turbulence model to extend to as many different sorts
of flows as possible beyond those for which it has been tested and beyond those
for which data can be made available. The weakest link in the ability of this model
to extend its validity is in the model for w. This is partly because the w model is
still under development with the p.d.f. method. Like the e equation throughout its
development, the @ model incorporates modifications for different flow situations.
The current model is no exception: the term involving (P /e)’ in (4.13) is chosen to
correct an underprediction of the mean velocity near the channel half-plane, based
on DNS data for only channel flow; and in the velocity model, the term of (4.10)
was implemented by Dreeben & Pope (1997a) to improve the model’s performance
on the logarithmic region. As a result, extension of this model to other flows cannot
be taken for granted. However, two central aspects of the model which do extend
are the representation of inhomogeneity and near-wall anisotropy. The appearance of
viscous transport terms in closed form is clearly valid for any turbulent flow, and the
analysis of the near-wall scaling of the Reynolds stresses based on the suppression of
v’ also applies to any wall-bounded flow. The ability of elliptic relaxation to extend to
a broad class of turbulent flows is not yet established, but promising results have been
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achieved with the k—e—v? model of Durbin (1995) for separated flows. While the need
to model more complex flows may necessitate changes to the non-local model, the
arguments developed here for the treatment of near-wall inhomogeneity, anisotropy,
and boundary conditions are sufficiently sound that their formulation can plausibly
remain in p.d.f. treatments which extend to the wall.

We wish to thank Professor David Ruppert for his useful discussions with us on
the subject of non-parametric regression. This work was supported by AFOSR award
F49620-93-1-0316.

Appendix. Numerical issues
A.1 Unbounded coefficients of the governing equations

As y — 0, the quantity G;; in the linear drift term of (3.3) becomes negative without
bound. This is clear from (4.5) and the boundary conditions imposed on k in §3: as
the wall is approached,

—€ —1
Gij ~ %51'] ~ )2 dij» (A1)
and from the no-slip condition on velocities,
(%; = (U)) ~ y. (A2)

So the combined term scales with 1/y, and it becomes unbounded as y — 0. Special
numerical treatment is required to handle this term.

To show how the numerics need to be modified, we solve an ordinary differential
equation with the same difficulty as the one described above. For coefficients a and b
which are independent of time, consider the initial value problem

dU = adt + bU dt, (A3)
U(0) = U,. (Ad)

Of the many methods available for solving this, one which provides the best analogy
for the numerical solution of (3.3) is to put the linear term of (A 3) on the left-hand
side, multiply through by the integrating factor e, and then solve for U(t) — Uy:

t
Ut)—Uy=a / e’ =ds + (" — 1) U,. (AS)
0

Now consider two different approaches for the numerical solution of (A 3) over a
finite time step At. The first is to replace dt with At in (A 3), and use the known
coefficients and U at t = 0 to approximate U(At). The second is to replace t with At
in (A5), and use that to determine U(At). Clearly the first method has a restriction
that

At < 7‘:”;;'2‘“ (A 6)
in order to achieve a stable solution; the second method has no such restriction. The
relevant case to consider is, what happens as b — —oo? In that limit, the increment
of U in the first method becomes undefined for any non-zero At, but the increment
in the second method, based on the analytical solution, is defined and well behaved.
The numerical scheme for (3.3) is based on this second approach to the solution of
(A 3).
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Equation (3.3) is a vector stochastic differential equation of the form
dU = Adt + B Udt + CdW (¢). (A7)

This equation is more complicated than (A3) in two respects. First it is a vec-
tor equation with coefficients 4,B, and C taken as a vector, a matrix, and a
scalar respectively. Second, it includes the stochastic term C dW (t). But the prob-
lem associated with the unbounded coefficient is identical to that of (A 3): here we
have

lin% det [B] = —o0. (AB)
y—

For coefficients A4, B, and C frozen over the time step At, we use the matrix exponential
integrating factor

e B (A9)
to obtain the analytical solution to (A7)

At At
U(At) — Uy = / P4 A4ds 4 (B4 —1) Ug + / CEAdW (s), (A 10)
0 0
where the stochastic integral on the right-hand side is the Ito integral (see Bhat-
tacharya & Waymire 1990; Gardiner 1990). This integral is taken as the sum of
infinitesimal Gaussian random vectors; the result is a Gaussian random vector with
covariance matrix

A
/ CIERTUREN (A11)
0

We now have an expression for the increment of U in terms of integrals of the
matrix exponential, all of which are defined and well-behaved in the limit as
det [B] — —oo. These expressions are computed using the methods of Van Loan
(1978).

A.2 Estimation of turbulent statistics and their gradients

The p.d.f. model developed here relies on the use of mean turbulent quantities and
their first and second spatial derivatives, based on the ensemble of particle properties.
Mean quantities such as (u;u;) and (w) are used in the coefficients of the particle
equations (2.13), (3.3), and in the forcing terms of the elliptic relaxation equations
(4.8). A two-stage non-parametric regression method of Dreeben & Pope (1992) is
used to estimate the mean quantities from the particle properties. In this method,
kernel estimates of Priestly & Chao (1972) are formed from the particle properties
and evaluated at the centres of mass of the kernels. The linear least-squares algorithm
of Ruppert & Wand (1994) is then used locally on these kernel estimates to provide
final estimates at the grid nodes. Mean quantities at the particle locations are formed
by linear interpolation of the nodal estimates.

For the current near-wall model, the two-stage method is extended because velocity
gradients are needed in the source term of (4.8), and the second derivative of velocity
is needed for the viscous term of (3.3). For first derivatives, central differences of
the kernel estimates on the grid are evaluated at the centres of mass and used in
the local least-squares algorithm. For second derivatives, five-point second differences
of the kernel estimates (chosen to minimize statistical error) are used in the local
least-squares algorithm.
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